在平面直角坐标系中,点M(,),以点M为圆心,OM长为半径作⊙M ,使⊙M与直线OM的另一交点为点B,与轴,轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.
如图,已知是外任意一点,过点作直线,,分别交于点,,,.求证:(的度数的度数).
如图,为的直径,,垂足为,,与交于. (1)求证:; (2)若,把半圆三等分,,求的长.
如图,△为锐角三角形,△内接于圆,,是△的垂心,是的直径.求证:.
如图,在中,弦为直径,于点,,,求和.
如图,点P的坐标为(3,0),⊙P的半径为5,且⊙P与x轴交于点A、B,与y轴交于点 C、D,试求出点A、B、C、D的坐标.