在直角坐标系中,椭圆的左、右焦点分别为. 其中也是抛物线的焦点,点为与在第一象限的交点,且(1)求的方程;(2)若过点的直线与交于不同的两点.在之间,试求 与面积之比的取值范围.(O为坐标原点)
设椭圆的左、右顶点分别为、,点在椭圆上且异于、两点,为坐标原点.(1)若直线与的斜率之积为,求椭圆的离心率;(2)对于由(1)得到的椭圆,过点的直线交轴于点,交轴于点,若,求直线的斜率.
已知函数(1)若,求的值;(2)若的图像与直线相切于点,求的值;(3)在(2)的条件下,求函数的单调区间.
如图,在四棱锥中,平面,底面是菱形,点O是对角线与的交点,是的中点,.(1) 求证:平面;(2) 平面平面;(3) 当四棱锥的体积等于时,求的长.
某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了名学生,相关的数据如下表所示:
(1) 用分层抽样的方法从喜欢语文的学生中随机抽取名,高中学生应该抽取几名?(2) 在(1)中抽取的名学生中任取名,求恰有名初中学生的概率.
设(1)求函数的最小正周期和单调递增区间(2)当