有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?
如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C. (1)BT是否平分∠OBA?证明你的结论. (2)若已知AT=4,试求AB的长.
如图,BC是半圆O的直径,P是BC延长线上一点,PA切⊙O于点A,∠B=30°. (1)试问AB与AP是否相等?请说明理由. (2)若PA=,求半圆O的直径.
如图,AB是半圆O的直径,C为半圆上一点,过C作半圆的切线,连接AC, 作直线AD,使∠DAC=∠CAB,AD交半圆于E,交过C点的切线于点D. (1)试判断AD与CD有何位置关系,并说明理由; (2)若AB=10,AD=8,求AC的长.
如图,在钝角△ABC中,AD⊥BC,垂足为D点,且AD与DC的长度为x2-7x+12=0的两个根(AD<DC),⊙O为△ABC的外接圆,如果BD的长为6,求△ABC的外接圆⊙O的面积.
已知:AB是⊙O中长为4的弦,P是⊙O上一动点,cos∠APB=, 问是否存在以A、P、B为顶点的面积最大的三角形?若不存在,试说明理由;若存在,求出这个三角形的面积.