如图1,在矩形ABCD中,AB=4,AD=2,点P是边AB上的一个动点(不与点A、点B重合),点Q在边AD上,将△CBP和△QAP分别沿PC、PQ折叠,使B点与E点重合,A点与F点重合,且P、E、F三点共线.(1)若点E平分线段PF,则此时AQ的长为多少?(2)若线段CE与线段QF所在的平行直线之间的距离为2,则此时AP的长为多少?(3)在“线段CE”、“线段QF”、“点A”这三者中,是否存在两个在同一条直线上的情况?若存在,求出此时AP的长;若不存在,请说明理由.
已知:如图,在⊙O中,弦AB的长是半径OA的倍,C为的中点,AB、OC 相交于点M.试判断四边形OACB的形状,并说明理由.
如图,⊙O表示一圆形工件,AB=15cm,OM=8cm,并且MB:MA="1:4," 求工件半径的长.
如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且AC=BD.试判断OC与OD 的数量关系并说明理由.
如图,⊙O的半径为2.5,动点P到定点O的距离为2,动点Q到P点的距离为1,则点P、Q与⊙O有何位置关系?说明理由.
操场上站着A、B、C三位同学,已知A、B相离5米,B、C相离3米,试写出A、C两位同学之间距离的取值范围.