解不等式,并写出它的正整数解.
口袋中有4张完全相同的卡片,分别写有1cm、2cm、3cm、4cm,口袋外有一张卡片,写有4cm,现随机从袋中取出两张卡片,与口袋外的那张放在一起,以卡片上的数量分别作为三条线段的长度,用树状图或表格列出所有可能的结果,求这三条线段能构成三角形的概率.
解不等式组:,并写出不等式组的整数解.
已知:求代数式的值.
计算:|-3|-(π-3)0+2sin30°;
已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合)(1)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;(2)在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;(3)如图③,分别在AD、BC上取点F、C’,使得∠APF=∠BPC’,与(1)中的操作相类似,即将△PAF沿PF翻折得到△PFG,并将△沿翻折得到△,连接,取的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由.