为了响应岳阳市政府“低碳出行、绿色出行”的号召,某中学数学兴趣小组在全校2000名学生中就上学方式随机抽取了400名学生进行抽样调查,经统计整理绘制出图a、图b两幅不完整的统计图:A:步行;B:骑自行车;C:乘公共交通工具;D:乘私家车;E:其他.请根据统计图提供的信息解答下列问题:(1)图a中“B”所在扇形的圆心角为 ;(2)请在图b中把条形统计图补充完整;(3)请根据样本数据估计全校骑自行车上学的学生人数.
如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒. (1)求A、C两点的坐标; (2)连接PA,用含t的代数式表示△POA的面积; (3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.
阅读材料:矩形的四个内角都是直角,矩形的对边平行且相等.利用阅读材料解决下列问题:如图,在矩形ABCD中,AB=6,BC=8,将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的F处. (1)求EF的长; (2)求梯形ABCE的面积.
如图,已知:点P(2m-1,6m-5)在第一象限角平分线OC上,∠BPA=90°,角两边与x轴、y轴分别交于A点、B点.(1)求点P的坐标(2)若点A(,0),求点B的坐标.
如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8). (1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法): ①点P到A、B两点的距离相等; ②点P到∠xOy的两边距离相等. (2)若在x轴上有点M,则能使△ABM的周长最短的点M的坐标为 .
如图所示,在△ABC中,AC=10,BC=17,CD=8,AD=6.求:(1)BD的长; (2)△ABC的面积.