盒中装有个零件,其中个是使用过的,另外个未经使用.(1)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求次抽取中恰有次抽到使用过的零件的概率;(2)从盒中随机抽取个零件,使用后放回盒中,记此时盒中使用过的零件个数为,求的分布列和数学期望.
(本小题满分12分). 一物体沿直线以速度(的单位为:秒,的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?
函数 (1)若f(-1)=0,并对恒有,求的表达式; (2)在(1)的条件下,对,=—kx是单调函数,求k的范围。
(本题满分12分) 某桶装水经营部每天的房租,人员工资等固定成本为200元,每桶水的进价是5元。销售单价与日均销售的关系如下表所示
设在进价基础上增加x元后,日均销售利润为y元。 (1)写出日均销售量P与x的函数关系式,标出定义域; (2)请根据以上数据作出分析:这个经营部怎样定价才能获得最大利润?
已知c>0.设命题P:函数y=cx在R上单调递减;Q:函数在上恒为增函数.若P或Q为真, P且Q为假,求c的取值范围。
已知二次函数满足,且, (1)求; (2)求在上的最大值和最小值。