已知A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(wx+j)(w>0,<j<0)图象上的任意两点,且角j的终边经过点P(l,-),若|f(x1)-f(x2)|=4时,|x1-x2|的最小值为. (1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当x∈时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.
已知集合,集合. (1)求; (2)求; (3)求
如图是正方体的平面展开图,那么在这个正方体中,异面直线与所成的角的大小是.
已知椭圆过点,且离心率. (1)求椭圆的标准方程; (2)若直线与椭圆相交于,两点(不是左右顶点),椭圆的右顶点为,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.
已知函数在与时都取得极值. (1)求的值及的极大值与极小值; (2)若方程有三个互异的实根,求的取值范围; (3)若对,不等式恒成立,求的取值范围.
某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件. (1)将一星期的商品销售利润表示成的函数; (2)如何定价才能使一个星期的商品销售利润最大?