设命题:“若,则有实根”.(1)试写出命题的逆否命题;(2)判断命题的逆否命题的真假,并写出判断过程.
△ABC的两个顶点A、B的坐标分别是(-5,0)、(5,0),边AC、BC所在直线的斜率之积为-,求顶点C的轨迹.
已知椭圆的中心在坐标原点,以坐标轴为对称轴,且经过两点P1(,1)、P2(-,-),求椭圆方程.
若椭圆b2x2+a2y2=a2b2(a>b>0)的左焦点为F,右顶点为A,上顶点为B,且离心率为,求∠ABF.
已知椭圆=1(a>b>0)与x轴的正半轴交于点A,O是原点.若椭圆上存在一点M,使MA⊥MO,求椭圆离心率e的取值范围.
如图,点A、B分别是椭圆=1长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.