如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.
小楠家附近的公路上通行车辆限速为千米/小时.小楠家住在距离公路米的居民楼(如图8中的P点处),在他家前有一道路指示牌正好挡住公路上的段(即点和点分别在一直线上),已知∥, ,,小楠看见一辆卡车通过处,秒后他在处再次看见这辆卡车,他认定这辆卡车一定超速,你同意小楠的结论吗?请说明理由. (参考数据:≈1.41,≈1.73)
如图,在中,点在边上,点在边上,且∥,.(1)求证:∥;(2)如果,,求的值.
如图,□中,∥,∥,点是的中点,和相交于点.(1)求的值;(2)如果,,请用、表示
(本题满分14分,其中第(1)、(2)小题各4分,第(3)小题6分)已知:如图,在平面直角坐标系xOy中,二次函数的图像经过点A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.(1)求这个二次函数的解析式和它的对称轴;(2)求证:∠ABO=∠CBO;(3)如果点P在直线AB上,且△POB 与△BCD相似,求点P的坐标.
(本题满分12分,其中第(1)小题5分,第(2)小题7分) 已知:如图,在△ABC中,AD是边BC上的中线,点E在线段BD上,且BE=ED,过点B作BF∥AC,交线段AE的延长线于点F.(1)求证:AC=3BF;(2)如果,求证:.