为了了解某校高一学生体能情况,抽取200位同学进行1分钟跳绳次数测试,将所得数据整理后画出频率分布直方图(如图所示),请回答下列问题:(1)次数在100~110之间的频率是多少?(2)若次数在110以上为达标,试估计该校全体高一学生的达标率是多少?(3)根据频率分布直方图估计,学生跳绳次数的平均数是多少?
如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2. 图1图2 (1)求证:A1C⊥平面BCDE; (2)过点E作截面平面,分别交CB于F,于H,求截面的面积; (3)线段BC上是否存在点P,使平面A1DP与平面A1BE成的角?说明理由.
如图,已知二面角α—AB—β的大小为120º,PC⊥α于C,PD⊥β于D,且PC=2,PD=3. (1)求异面直线AB与CD所成角的大小; (2)求点P到直线AB的距离.
如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG. (1)求GH长的取值范围; (2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线的距离.
如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC. (1)求证:平面EFGH; (2)求证:四边形EFGH是矩形.
如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心. (1)求直线EF与平面ABCD所成角的正切值; (2)求异面直线A1C与EF所成角的余弦值.