已知函数,其中a,b∈R(1)当a=3,b=-1时,求函数f(x)的最小值;(2)若曲线y=f(x)在点(e,f(e))处的切线方程为2x-3y-e=0(e=2.71828 为自然对数的底数),求a,b的值;(3)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围.
(本小题共12分) 已知函数的图象过点,且在内单调递减,在上单调递增。 (1)求的解析式; (2)若对于任意的,不等式恒成立,试问这样的是否存在.若存在,请求出的范围,若不存在,说明理由;
(本小题满分12分)从甲、乙两名运动员的若干次训练成绩中随机抽取6次,分别为甲:7.7,7.8,8.1,8.6,9.3,9.5.乙:7.6,8.0,8.2,8.5,9.2,9.5 (1)根据以上的茎叶图,对甲、乙运动员的成绩作比较,写出两个统计结论; (2)从甲、乙运动员六次成绩中各随机抽取1次成绩,求甲、乙运动员的成绩至少有一个高于8.5分的概率。 (3)经过对甲、乙运动员若干次成绩进行统计,发现甲运动员成绩均匀分布在[7.5,9.5]之间,乙运动员成绩均匀分布在[7.0,10]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.5分的概率。
(本小题共12分) 在如图的多面体中,⊥平面,,,,,,,是的中点. (Ⅰ)求证:平面; (Ⅱ)求证:;
在中,角所对的边分别为a,b, c. 已知且. (Ⅰ)当时,求的值; (Ⅱ)若角为锐角,求p的取值范围
(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问9分.) 直线称为椭圆的“特征直线”,若椭圆的离心率.(1)求椭圆的“特征直线”方程; (2)过椭圆C上一点作圆的切线,切点为P、Q,直线PQ与椭圆的“特征直线”相交于点E、F,O为坐标原点,若取值范围恰为,求椭圆C的方程.