已知函数,其中a,b∈R(1)求函数f(x)的最小值;(2)当a>0,且a为常数时,若函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围;(3)当时,若对x∈[0,+∞)恒成立,求a的最小值.
(本小题满分14分)已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求的单调区间;(Ⅲ)证明:对任意的在区间内均存在零点.
(本小题满分12分)已知A(,0),B(,0)为平面内两定点,动点P满足|PA|+|PB|=2.(I)求动点P的轨迹方程;(II)设直线与(I)中点P的轨迹交于M、N两点.求△BMN的最大面积及此时直线l的方程.
(本小题满分12分)已知数列为等差数列,且,;设数列的前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)若为数列的前项和,求
(本小题满分12分)设平面向量= ( m , 1), =" (" 2 , n ),其中 m, n {-2,-1,1,2}.(I)记“使得⊥成立的( m,n )”为事件A,求事件A发生的概率;(II)记“使得//(-2)成立的( m,n )”为事件B,求事件B发生的概率.
(本小题满分12分)如图,四棱锥中,是的中点,,,面,且.(Ⅰ)证明:;(Ⅱ)证明:面.