已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.(ⅰ)证明:k·kON为定值;(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.
在第一象限,且是椭圆上的一点,△的内切圆半径是,求的坐标
已知为椭圆的左右焦点,抛物线以为顶点,为焦点,设为椭圆与抛物线的一个交点,椭圆离心率为,且,求的值
在棱长为的正方体中,是的中点,若都在上且,是上的点,求四面体的体积
平面直角坐标系中,直线:,,,是上的两动点,且,求使得四边形周长最小时两点的坐标及此时的最小周长
双曲线一支上有不同三点,,与焦点的距离成等差数列,中垂线经过定点的坐标