已知.当时,解不等式;(2)若,解关于的不等式.
函数.(1)若,求函数的定义域;(2)设,当实数时,证明:.
在平面直角坐标系中,已知曲线(θ为参数),将上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线,以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.(1)试写出曲线的极坐标方程与曲线的参数方程;(2)在曲线上求一点,使点到直线的距离最小,并求此最小值.
已知为半圆的直径,,为半圆上一点,过点圆的切线,过点作于,交半圆于点.(1)证明:平分;(2)求的长.
设函数.(1)求函数的单调区间;(2)若,求证:.
在如图所示的圆锥中,是圆锥的高,是底面圆的直径,点是弧的中点,是线段的中点,是线段上一点,且,.(1)若为的中点,试在上确定一点,使得面,并说明理由;(2)若,求直线与面所成角的正弦值.