如图,已知矩形OABC的A点在x轴上,C点在y轴上,,.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.
如图①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分别是AB、AC上的两点,且GF∥BC,AF=2,BG=4。(1)求梯形BCFG的面积;(2)有一梯形DEFG与梯形BCFG重合,固定△ABC,将梯形DEFG向右运动,直到点D与点C重合为止,如图②.①若某时段运动后形成的四边形BDG'G中,DG⊥BG',求运动路程BD的长,并求此时的值;②设运动中BD的长度为x,试用含x的代数式表示出梯形DEFG与Rt△ABC重合部分的面积S。
26、某校八年级一班20名女生某次体育测试的成绩统计如下:(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;(2)在(1)的条件下,设20名学生本次测试成绩的众数是,中位数为,求的值。
如图,在平面直角坐标系xOy中,一次函数与x轴、y轴分别相交于点A和点B,直线经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分.(1)求△ABO的面积;(2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。
如图,已知AD是△ABC的中线,∠ADC=45°,把△ABC沿AD对折,点C落在点E的位置,连接BE,若BC=6cm。(1)求BE的长;(2)当AD=4cm时,求四边形BDAE的面积。
某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票(元)与行李质量(千克)间的一次函数关系式为,现知贝贝带了60千克的行李,交了行李费5元。(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?