生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:(1)试分别估计元件A、元件B为正品的概率;(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下;(1)求生产5件元件B所获得的利润不少于300元的概率; (2)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.
已知椭圆的对称轴为坐标轴,一个焦点为,点在椭圆上(Ⅰ)求椭圆的谢方程(Ⅱ)已知直线:与椭圆交于两点,求的面积(Ⅲ)设为椭圆上一点,若,求点的坐标
(本小题共12分)如图所示,平面,平面,,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.(Ⅲ)求凸多面体的体积为
某中学的高二(1)班男同学有名,女同学有名,老师按照分层抽样的方法组建了一个人的课外兴趣小组.(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(Ⅲ)试验结束后,第一次做试验的同学得到的试验数据为,第二次做试验的同学得到的试验数据为,请问哪位同学的实验更稳定?并说明理由.
(本小题满分12分)已知三点的坐标分别是,,其中,且.(Ⅰ)求角的值;(Ⅱ)当 时,求函数 的最大值和最小值.
(本小题满分14分)已知椭圆:上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(Ⅰ) 求椭圆的方程;(Ⅱ) 过点(,)的动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.