设非常数数列{an}满足,n∈N*,其中常数α,β均为非零实数,且 α+β≠0.(1)证明:数列{an}为等差数列的充要条件是α+2β=0;(2)已知α=1,β=, a1=1,a2=,求证:数列{| an+1-an-1|} (n∈N*,n≥2)与数列{n+} (n∈N*)中没有相同数值的项.
已知二次函数f(x)=ax2+bx+c(a>0).(Ⅰ)(i)若b=﹣2,且f(x)在(1,+∞)上为单调递增函数,求实数a的取值范围;(ii)若b=﹣1,c=1,当x∈[0,1]时,|f(x)|的最大值为1,求实数a的取值范围;(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有两个小于1的不等正根,求a的最小正整数值.
已知抛物线C:y2=2x,O为坐标原点,经过点M(2,0)的直线l交抛物线于A,B两点,P为抛物线C上一点.(Ⅰ)若直线l垂直于x轴,求|﹣|的值;(Ⅱ)求三角形OAB的面积S的取值范围.
如图,已知三角形△ABC与△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.(Ⅰ)求证:AB⊥CQ;(Ⅱ)求BP的长;(Ⅲ)求直线AP与平面BCD所成的角.
已知a,b,c分别为△ABC三个内角A,B,C的对边,a2=b2+c2﹣bc.(Ⅰ)求A;(Ⅱ)若a=2,求bsinB+csinC的最大值.
在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a2,b2,a3+2成等比数列,数列{bn}的前n项和为Sn.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)若Sn+an>m对任意的正整数n恒成立,求常数m的取值范围.