已知f(x)是实数集R上的函数,且对任意xR,f(x)=f(x+1)+f(x-1)恒成立.(1)求证:f(x)是周期函数.(2)已知f(-4)=2,求f(2012).
如图,在侧棱垂直于底面的三棱柱中,点是的中点. (Ⅰ)求证:;(Ⅱ)求证:平面; (Ⅲ)求三棱锥的体积.
已知向量,函数(Ⅰ)求函数的最小正周期;(Ⅱ)将函数的图像向左平移上个单位后,再将所得图像上所有点的横坐标伸长为原来的3倍,得到函数的图像,求函数的解析式及其对称中心坐标.
已知等差数列的前项和为,且 (Ⅰ)求数列的通项;(Ⅱ)设,求数列的前项和
如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,是曲线C1和C2的交点. (Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程; (Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问是否为定值,若是,求出定值;若不是,请说明理由.
已知函数f(x)=lnx-ax-3(a≠0). (Ⅰ)讨论f(x)的单调性; (Ⅱ)若对于任意的a∈[1,2],函数在区间(a,3)上有最值,求实数m的取值范围.