设椭圆的焦点在轴上, 分别是椭圆的左、右焦点,点是椭圆在第一象限内的点,直线交轴于点,(1)当时,(1)若椭圆的离心率为,求椭圆的方程;(2)当点P在直线上时,求直线与的夹角;(2) 当时,若总有,猜想:当变化时,点是否在某定直线上,若是写出该直线方程(不必求解过程).
(本小题满分14分) 在平面直角坐标系中,点为动点,、分别为椭圆的左右焦点,已知为等腰三角形. (Ⅰ)求椭圆的离心率; (Ⅱ)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.
(本小题满分12分) 已知是函数的一个极值点. (Ⅰ)求; (Ⅱ)求函数的单调区间.
(本小题共12分) 如图,在中,,斜边. 可以通过以直线为轴旋转得到,且二面角的直二面角.是的中点. (I)求证:平面平面; (II)求异面直线与所成角的大小.
(本小题满分12分)已知等差数列满足:,.的前n项和为. (I)求及; (II)令(),求数列的前n项和.
已知正数a, b, c满足a+b2c. 求证:.