设椭圆的焦点在轴上, 分别是椭圆的左、右焦点,点是椭圆在第一象限内的点,直线交轴于点,(1)当时,(1)若椭圆的离心率为,求椭圆的方程;(2)当点P在直线上时,求直线与的夹角;(2) 当时,若总有,猜想:当变化时,点是否在某定直线上,若是写出该直线方程(不必求解过程).
已知圆的参数方程是为参数). (Ⅰ)以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,写出圆的极坐标方程; (Ⅱ)若直线的极坐标方程为,设直线和圆的交点为,求的面积.
设函数.若曲线在点处的切线方程为. (Ⅰ)求、的值; (Ⅱ)设,若-2时,,求的取值范围.
已知椭圆的焦点为,点在C上,且轴. (Ⅰ)求椭圆的方程; (Ⅱ) 若直线与椭圆交于不同的两点,原点在以为直径的圆外,求的取值范围.
如图所示,已知在四棱锥中,底面为直角梯形,其中//,,侧棱,且. (Ⅰ)求证:平面; (Ⅱ)设点为中点,求四面体的体积.
已知是递增的等差数列,,是方程的根. (Ⅰ)求的通项公式; (Ⅱ)求数列的前项和.