如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=5,时,求BD的长.
如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由 45 ° 改为 30 ° . 已知原传送带 A B 长为4米. (1)求新传送带 A C 的长度; (2)如果需要在货物着地点 C 的左侧留出2米的通道,试判断距离 B 点4米的货物 M N Q P 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据: 2 ≈ 1 . 41 , 3 ≈ 1 . 73 , 5 ≈ 2 . 24 , 6 ≈ 2 . 45 )
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.
已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10, BD=8.(1)若AC⊥BD,试求四边形ABCD的面积 ;(2)若AC与BD的夹角∠AOD=,求四边形ABCD的面积;(3)试讨论:若把题目中“平行四边形ABCD”改为“四边形ABCD”,且∠AOD= AC=,BD=,试求四边形ABCD的面积(用含,,的代数式表示).
(1)(本小题满分4分)—+(2)(本小题满分6分)已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=-1时,y=1. 求x=-时,y的值.
如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.