将一颗正方体的骰子先后抛掷2次(每个面朝上等可能),记下向上的点数,求:(1)求两点数之和为5的概率;(2)以第一次向上点数为横坐标,第二次向上的点数为纵坐标的点在圆的内部的概率.
△ABC的角A、B、C的对边分别为a、b、c,=(2b-c,a),=(cosA,-cosC),且⊥.(Ⅰ)求角A的大小;(Ⅱ)当y=2sin2B+sin(2B+)取最大值时,求角的大小.
(Ⅰ)已知函数:求函数的最小值;(Ⅱ)证明:;(Ⅲ)定理:若 均为正数,则有 成立(其中.请你构造一个函数,证明:当均为正数时,.
在东西方向直线延伸的湖岸上有一港口O,一艘机艇以40km/h的速度从O港出发,先沿东偏北的某个方向直线前进到达A处,然后改向正北方向航行,总共航行30分钟因机器出现故障而停在湖里的P处,由于营救人员不知该机艇的最初航向及何时改变的航向,故无法确定机艇停泊的准确位置,试划定一个最佳的弓形营救区域(用图形表示),并说明你的理由.
设是满足不等式的自然数的个数,其中.(Ⅰ)求的值;(Ⅱ) 求的解析式;(Ⅲ)记,令,试比较与的大小.
已知圆C:,圆C关于直线对称,圆心在第二象限,半径为(Ⅰ)求圆C的方程; (Ⅱ)已知不过原点的直线与圆C相切,且在x轴、y轴上的截距相等,求直线的方程。