如图,在Rt△ABC中,∠ACB=90°,AC="4" cm ,BC="3" cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以点1cm/s 的速度匀速运动,以点P为圆心,PB长为半径作圆.设点P运动的时间为 t s.若⊙P与⊙O相切,求t的值.
在平面直角坐标系中,抛物线过点,,与轴交于点.(1)求抛物线的函数表达式;(2)若点在抛物线的对称轴上,当的周长最小时,求点 的坐标;(3)在抛物线的对称轴上是否存在点,使成为以为直角边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.
在四边形中,对角线与交于点,是上任意一点,于点,交于点.(1)如图1,若四边形是正方形,判断与的数量关系;明明发现,与分别在和中,可以通过证明和全等,得到与的数量关系;请回答:与的数量关系是 .(2) 如图2,若四边形是菱形, ,请参考明明思考问题的方法,求的值.
如图,在⊙中,为直径,,弦与交于点,过点分别作⊙的切线交于点,且GD与的延长线交于点.(1)求证:;(2)已知:,⊙的半径为,求的长.
为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,共调查 名学生;(2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;(4)如果该校共有学生名,请你估计最喜爱古琴的学生人数.
如图,中,,是边上的中线,分别过点,作,的平行线交于点,且交于点,连接.(1)求证:四边形是菱形;(2)若,求的值.