某厂生产A产品的年固定成本为250万元,若A产品的年产量为万件,则需另投入成本(万元)。已知A产品年产量不超过80万件时,;A产品年产量大于80万件时,。因设备限制,A产品年产量不超过200万件。现已知A产品的售价为50元/件,且年内生产的A产品能全部销售完。设该厂生产A产品的年利润为L(万元)。(1)写出L关于的函数解析式;(2)当年产量为多少时,该厂生产A产品所获的利润最大?
已知、为椭圆的左、右焦点,且点在椭圆上.(1)求椭圆的方程;(2)过的直线交椭圆于两点,则的内切圆的面积是否存在最大值?若存在其最大值及此时的直线方程;若不存在,请说明理由.
已知函数.(1)当时,求函数的单调区间;(2)若时,函数在闭区间上的最大值为,求的取值范围.
如图,四棱锥中,底面是边长为1的正方形,平面, ,,为的中点,在棱上.(1)求证:;(2)求三棱锥的体积.
2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:(1)完成被调查人员的频率分布直方图;(2)若从年龄在,的被调查者中各随机选取1人进行追踪调查,求两人中至少有1人赞成“车辆限行”的概率.
已知公差不为0的等差数列的前n项和为,,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前n项和.