某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.
如图,A,B,C是椭圆M:上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC。(1)求椭圆的离心率;(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程。
如图,在正方体中,分别为的中点.(1)求证:平面;(2)求证:平面平面.
在平面直角坐标系中,设锐角的始边与轴的非负半轴重合,终边与单位圆交于点,将射线绕坐标原点按逆时针方向旋转后与单位圆交于点. 记.(1)求函数的值域;(2)设的角所对的边分别为,若,且,,求.
已知数列满足,且不含数字,顺序为按从小到大排列,求证:
(本小题满分10分)已知四棱锥的底面为直角梯形,底面,且是的中点.(1)证明:平面平面;(2)求与所成角的余弦值;(3)求平面与平面所成二面角(锐角)的余弦值.