已知等差数列{an}的公差d>0,设{an}的前n项和为Sn,a1=1,S2·S3=36
(1)求d及Sn; (2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+⋯+am+k=65.
1)在平面直角坐标系中,已知某点,直线.求证:点P到直线的距离 2)已知抛物线C: 的焦点为F,点P(2,0),O为坐标原点,过P的直线与抛物线C相交于A,B两点,若向量在向量上的投影为n,且,求直线的方程。
已知数列是公差为1的等差数列,是公比为2的等比数列,分别是数列和前n项和,且 ①分别求,的通项公式。 ②若,求n的范围 ③令,求数列的前n项和。
六名学生需依次进行身体体能和外语两个项目的训练及考核。每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练(即淘汰),若每个学生身体体能考核合格的概率是,外语考核合格的概率是,假设每一次考试是否合格互不影响。 ①求某个学生不被淘汰的概率。 ②求6名学生至多有两名被淘汰的概率 ③假设某学生不放弃每一次考核的机会,用表示其参加补考的次数,求随机变量的概率。
在正三棱柱中,底面三角形ABC 的边长为,侧棱的长为,D为棱的中点。 ①求证:∥平面 ②求二面角的大小 ③求点到平面的距离。
在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知, ,且∥ ①求角B的大小②若b=1,求△ABC面积的最大值。