甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为 2 3 ,乙获胜的概率为 1 3 ,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率; (2)记 X 为比赛决出胜负时的总局数,求 X 的分布列和均值(数学期望).
已知,则
已知, 且,求证:
(本小题满分10分) 已知圆O:,圆C:,由两圆外一点引两圆切线PA、PB,切点分别为A、B,满足|PA|=|PB|. (Ⅰ)求实数a、b间满足的等量关系; (Ⅱ)求切线长|PA|的最小值; (Ⅲ)是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?若存在,求出圆P的方程;若不存在,说明理由.
(本小题满分10分) 已知,,点的坐标为 (1)当时,求的坐标满足的概率。 (2)当时,求的坐标满足的概率。
(本小题满分10分) 用秦九韶算法演算出多项式在时的值. (必须写出相应的完整步骤,只写答案不给分,缺少相应步骤将扣除相应的步骤分)