甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为 2 3 ,乙获胜的概率为 1 3 ,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率; (2)记 X 为比赛决出胜负时的总局数,求 X 的分布列和均值(数学期望).
甲、乙两人在罚球线投球命中的概率分别为,且各次投球相互之间没有影响. (1)甲、乙两人在罚球线各投球一次,求这二次投球中恰好命中一次的概率; (2)甲、乙两人在罚球线各投球二次,求这四次投球中至少有一次命中的概率.
已知直线的参数方程为,曲线的极坐标方程为. (1)将直线的参数方程化为普通方程;以极点为直角坐标系的原点,极轴为轴正半轴,建立直角坐标系,且在两种坐标系中取相同的长度单位,将曲线的极坐标方程化为直角坐标方程; (2)若为直线上任一点,是曲线上任一点,求的最小值.
已知复数,且为纯虚数. (1)求复数; (2)若,求复数的模.
(本题满分14分) 设函数. (Ⅰ)当时,讨论函数的单调性; (Ⅱ)若函数仅在x=0处有极值,试求a的取值范围; (Ⅲ)若对于任何上恒成立,求b的取值范围.
(本题满分14分)口袋中有个白球和3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若,求: (1)n的值; (2)X的概率分布与数学期望.