某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为元(为圆周率).(1)将表示成的函数,并求该函数的定义域;(2)讨论函数的单调性,并确定和为何值时该蓄水池的体积最大.
已知等差数列满足:,. (1)求数列的通项公式; (2)设等比数列的各项均为正数,为其前项和,若,,求.
在△ABC中,已知,,,求B及S.
在△中,的对边分别为,若. (1)求证:; (2)求边长的值; (3)若,求△的面积.
已知△的面积满足,且,与的夹角为. (1)求的取值范围; (2)求函数的最大值及最小值.
某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图. (1)求直方图中的值; (2)求续驶里程在的车辆数; (3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为的概率.