某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为元(为圆周率).(1)将表示成的函数,并求该函数的定义域;(2)讨论函数的单调性,并确定和为何值时该蓄水池的体积最大.
已知抛物线的焦点F也是椭圆的一个焦点,与的公共弦长为,过点F的直线与相交于两点,与相交于两点,且与同向. (Ⅰ)求的方程; (Ⅱ)若,求直线的斜率.
设数列的前项和为,已知,且. (Ⅰ)证明:; (Ⅱ)求.
已知长方体,点为的中点. (1)求证:面; (2)若,试问在线段上是否存在点使得,若存在求出,若不存在,说明理由.
某车间将10名技工平均分成甲.乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为. (1)分别求出,的值; (2)分别求出甲.乙两组技工在单位时间内加工的合格零件的方差和,并由此分析两组技工的加工水平; (3)质检部门从该车间甲.乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于,则称该车间“质量合格”,求该车间“质量合格”的概率. (注:方差,其中为数据的平均数).
如图,在平面四边形中,, (1)求的值; (2)求的长.