已知矩阵,求点在矩阵对应的变换作用下得到的点坐标.
(本题12分)(1)已知f (x+1)=x2+4x+1,求f (x)的解析式;(2)已知f ()=+1,求f (x) 的解析式. (不必写出定义域)
(本题10分)已知,,,求的取值范围。
(本大题满分13分)设函数是定义域在上的单调函数,且对于任意正数有,已知.(1)求的值;(2)一个各项均为正数的数列满足:,其中是数列的前n项的和,求数列的通项公式;(3)在(2)的条件下,是否存在正数,使 对一切成立?若存在,求出M的取值范围;若不存在,说明理由.
(满分13分)已知椭圆中心在原点,焦点在x轴上,离心率,点分别为椭圆的左、右焦点,过右焦点且垂直于长轴的弦长为⑴ 求椭圆的标准方程;⑵ 过椭圆的左焦点作直线,交椭圆于两点,若,求直线的倾斜角。
(本小题满分13分)设直线x=1是函数f(x)的图像的一条对称轴,对于任意,f(x+2)="--" f(x),当.(1)证明:f(x)在R上是奇函数;(2)当时,求f(x)的解析式。