线段的端点为,直线上的点,使,求的值.
求函数y=sinx+cosx的周期,对称轴方程并指出图象可由正弦曲线经过怎样的变化得到.
已知 sin α = 45 , α ∈ ( π 2 , π ) , cos β = - 5 13 , β 是第三象限角,求 cos ( α - β ) .
已知 sin α = 2 cos α ,求 sin α - 4 cos α 5 s i n α + 2 c o s α 及 si n 2 α + 2 sin α cos α 的值.
已知椭圆C:+=1(a>b>0)的两个焦点分别为F1(﹣2,0),F2(2,0),离心率为.过焦点F2的直线l(斜率不为0)与椭圆C交于A,B两点,线段AB的中点为D,O为坐标原点,直线OD交椭圆于M,N两点.(Ⅰ)求椭圆C的方程;(Ⅱ)当四边形MF1NF2为矩形时,求直线l的方程.
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.(Ⅰ)求证:MN∥平面ABB1A1;(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.