在△ABC中,AB=6,BC=8,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1,若△CBC1的面积为16,求△ABA1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点P1,直接写出线段EP1长度的最大值与最小值.
(本题6分)化简求值:,其中
(本题3+3+4+4分)如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C, (1)求抛物线的表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且,求点D的坐标; (3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE ①判断四边形OAEB的形状,并说明理由; ②点F是OB的中点,点M是直线BD上的一个动点,且点M与点B不重合,当,请直接写出线段BM的长。
(本题2+3+3+4分)如图1,点A是反比例函数(x>0)图象上的任意一点,过点A作AB∥x轴,交另一个反比例函数(k<0,x<0)的图象于点B. (1)若S△AOB=3,则k=______; (2)当k=-8时: ①若点A的横坐标是1,求∠AOB的度数; ②将①中的∠AOB绕着点O旋转一定的角度,使∠AOB的两边分别交反比例函数y1、y2的图象于点M、N,如图2所示.在旋转的过程中,∠OMN的度数是否变化?并说明理由; (3)如图1,若不论点A在何处,反比例函数(k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.
(本题4+6分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元. (1)求A、B两种奖品单价各是多少元? (2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.
(本题3+3+4分)如图,四边形ABCD是⊙O的内接四边形,AC为直径,,DE⊥BC,垂足为E. (1)求证:CD平分∠ACE; (2)判断直线ED与⊙O的位置关系,并说明理由; (3)若CE=1,AC=4,求阴影部分的面积.