已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点、(,都在轴上方) ,且.(1)求椭圆的方程;(2)当为椭圆与轴正半轴的交点时,求直线方程;(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
(本小题满分12分)如图,在四棱锥P-ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(Ⅰ)求证:DE∥平面PBC;(Ⅱ)求三棱锥A-PBC的体积.
(本小题满分12分)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为.(Ⅰ)请将上面的列联表补充完整;(Ⅱ)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;(Ⅲ)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少?参考数据:
(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知c=2,向量m=(c,b),n=(cosC,sinB),且m∥n.(Ⅰ)求角C的大小;(Ⅱ)若sin(A+B),sin2A,sin(B-A)成等差数列,求边a的大小.
(本小题满分10分)选修4—5:不等式选讲已知a+b=1,对,b∈(0,+∞),+≥|2x-1|-|x+1|恒成立,(Ⅰ)求+的最小值;(Ⅱ)求x的取值范围。
(本小题满分10分)选修4—4:坐标系与参数方程已知直线l经过点P(,1),倾斜角α=,圆C的极坐标方程为=cos(θ-).(Ⅰ)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;(Ⅱ)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积.