已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线(1)求曲线C的方程,(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
(本小题满分13分)对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数。 (1)求闭函数符合条件②的区间[]; (2)判断函数是否为闭函数?并说明理由; (3)判断函数是否为闭函数?若是闭函数,求实数的取值范围。
(本小题满分13分)如图,在三棱柱中,四边形是边长为4的正方形,平面⊥平面,. (Ⅰ)求证:⊥平面; (Ⅱ)若点是线段的中点,请问在线段是否存在点,使得面?若存在,请说明点的位置,若不存在,请说明理由; (Ⅲ)求二面角的大小.
(本小题满分12分)四棱锥中,底面是边长为8的菱形,,若,平面⊥平面. (1)求四棱锥的体积; (2)求证:⊥.
(本小题满分12分)已知集合A={x∈R|x2+4x="0}," B={x∈R|x2+2(a+1)x+a2-1=0},如果A∩B=B,求实数a的取值范围.
(本小题满分12分)设函数的定义域为集合,函数的定义域为集合. 求:(1)集合; (2)集合.