△ABC中,∠C=90°,点D在边AB上,AD=AC=7,BD=BC.动点M从点C出发,以每秒1个单位的速度沿CA向点A运动,同时,动点N从点D出发,以每秒2个单位的速度沿DA向点A运动.当一个点到达点A时,点M、N两点同时停止运动.设M、N运动的时间为t秒.⑴ 求cosA的值.⑵ 当以MN为直径的圆与△ABC一边相切时,求t的值.
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F. (1)求证:OE=OF; (2)若CE=8,CF=6,求OC的长; (3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
如图,在△ABC中,AB=AC,AD是△ABC的角平分线,作AE∥BC,CE∥AD,AE、CE交于点E. (1)证明:四边形ADCE是矩形. (2)若DE交AC于点O,证明:OD∥AB且OD=AB.
已知:如图,▱ABCD中,∠ABC的平分线交AD于E,∠CDA的平分线交BC于F. (1)求证:△ABE≌△CDF; (2)连接EF、BD,求证:EF与BD互相平分.
如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.
在正方形ABCD中,E是BC的中点,F为CD上一点,且,试判断△AEF是否是直角三角形?试说明理由.