如图,在正方形ABCD中,AB=5,P是BC边上任意一点,E是BC延长 线上一点,连接AP,作PF⊥AP,使PF=PA,连接CF,AF,AF交CD边于点G,连接PG. (1)求证:∠GCF=∠FCE; (2)判断线段PG,PB与DG之间的数量关系,并证明你的结论; (3)若BP=2,在直线AB上是否存在一点M,使四边形DMPF是平行四边形,若存在,求出BM的长度,若不存在,说明理由.
解方程:
.计算:(每小题5分,共10分) (1) (2)
分解因式:(每小题4分,共8分) (1) (2)
解不等式(组),并把解集在数轴上表示出来。(每小题6分,共12分) (1)1-≥2+ (2)
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(-8,4).过点D(0,6)和E(12,0)的直线分别与AB,BC交于点M,N. (1)求直线DE的解析式和点M的坐标; (2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上; (3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.