如图,在四棱锥P-ABCD中,侧面PAD底面ABCD,侧棱,底面ABCD为直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E为AD中点.(1)求证:PE平面ABCD:(2)求异面直线PB与CD所成角的余弦值:(3)求点A到平面PCD的距离.
已知函数 (1)当时,求的最小值; (2)在区间(1,2)内任取两个实数p,q,且p≠q,若不等式>1恒成立,求实数a的取值范围; (3)求证:(其中)。
已知椭圆:的离心率,原点到过点,的直线的距离是. (1)求椭圆的方程; (2)若椭圆上一动点关于直线的对称点为,求的取值范围; (3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.
如图,在直三棱柱(侧棱和底面垂直的棱柱)中,,,,且满足. (1)求证:平面侧面; (2)求二面角的平面角的余弦值。
某市准备从5名报名者(其中男3人,女2人)中选2人参加两个副局长职务竞选。 (1)求所选2人均为女副局长的概率; (2)若选派两个副局长依次到A、B两个局上任,求A局是男副局长的情况下,B局是女副局长的概率。
定义在R上的函数及二次函数满足:且。 (1)求和的解析式; (2); (3)设,讨论方程的解的个数情况.