如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合. (1)当CF=1时,求证:EF⊥A1C; (2)设二面角C-AF-E的大小为θ,求tanθ的最小值.
已知函数(Ⅰ)求函数的最大值;(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;(Ⅲ)若,求证:.
在数列中,,且.(Ⅰ) 求,猜想的表达式,并加以证明;(Ⅱ)设,求证:对任意的自然数都有.
已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.
已知展开式各项系数的和比它的二项式系数的和大992.(Ⅰ)求n;(Ⅱ)求展开式中的项;(Ⅲ)求展开式系数最大项.
观察(1);(2);(3).请你根据上述规律,提出一个猜想,并证明.