已知a,b,c,d∈R,用分析法证明:ac+bd≤并指明等号何时成立.
设为整数,集合中的数由小到大组成数列.(1)写出数列的前三项;(2)求.
一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋. (1)求该人在4次投掷中恰有三次投入红袋的概率; (2)求该人两次投掷后得分的数学期望.
如图所示在直角梯形OABC中 点M是棱SB的中点,N是OC上的点,且ON:NC=1:3。 (1)求异面直线MM与BC所成的角; (2)求MN与面SAB所成的角.
已知a,b∈R,若矩阵所对应的变换把直线l:2x-y=3变换为自身, 求a,b的值.
已知集合. ⑴是否存在实数,使得集合中所有整数的元素和为28?若存在,求出,若不存在,请说明理由; ⑵以为首项,为公比的等比数列前项和记为,对任意,均有,求的取值范围.