已知a,b,c,d∈R,用分析法证明:ac+bd≤并指明等号何时成立.
将边长为1的正方形 A A 1 O 1 O (及其内部)绕 O O 1 旋转一周形成圆柱,如图, AC ̂ 长为 2 3 π , A 1 B 1 ̂ 长为 π 3 ,其中 B 1 与 C 在平面 A A 1 O 1 O 的同侧.
(1)求三棱锥 C - O 1 A 1 B 1 的体积;
(2)求异面直线 B 1 C 与 A A 1 所成的角的大小.
已知函数 f ( x ) = | 2 x - a | + a .
(1)当 a = 2 时,求不等式 f ( x ) ⩽ 6 的解集;
(2)设函数 g ( x ) = | 2 x - 1 | ,当 x ∈ R 时, f ( x ) + g ( x ) ⩾ 3 ,求 a 的取值范围.
在直角坐标系 xOy 中,曲线 C 1 的参数方程为 x = 3 cos α y = sin α ( α 为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρ sin ( θ + π 4 ) = 2 2 .
(1)写出 C 1 的普通方程和 C 2 的直角坐标方程;
(2)设点 P 在 C 1 上,点 Q 在 C 2 上,求 | PQ | 的最小值及此时 P 的直角坐标.
如图, ⊙ O 中 AB ̂ 的中点为 P ,弦 PC , PD 分别交 AB 于 E , F 两点.
(1)若 ∠ PFB = 2 ∠ PCD ,求 ∠ PCD 的大小;
(2)若 EC 的垂直平分线与 FD 的垂直平分线交于点 G ,证明: OG ⊥ CD .
设函数 f ( x ) = a cos 2 x + ( a - 1 ) ( cos x + 1 ) ,其中 a > 0 ,记 | f ( x ) | 的最大值为 A .
(Ⅰ)求 f ' ( x ) ;
(Ⅱ)求 A ;
(Ⅲ)证明: | f ' ( x ) | ⩽ 2 A .