阅读并操作:如图①,这是由十个边长为1的小正方形组成的一个图形,对这个图形进行适当分割(如图②),然后拼接成新的图形(如图③).拼接时不重叠、无空隙,并且拼接后新图形的顶点在所给正方形网格图中的格点上(网格图中每个小正方形边长都为1).请你参照上述操作过程,将由图①所得到的符合要求的新图形画在下边的正方形网格图中.(1)新图形为平行四边形;(2)新图形为等腰梯形.
(11·珠海)如图,在鱼塘两侧有两棵树A、B,小华要测量此两树之间的距离.他在距A树30 m的C处测得∠ACB=30°,又在B处测得∠ABC=120°.求A、B两树之间的距离(结果精确到0.1m)(参考数据:
(11·珠海)如图,在正方形ABC1D1中,AB=1.连接AC1,以AC1为边作第二个正方形AC1C2D2;连接AC2,以AC2为边作第三个正方形AC2C3D3.(1)求第二个正方形AC1C2D2和第三个正方形的边长AC2C3D3;(2)请直接写出按此规律所作的第7个正方形的边长.
(11·珠海)八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,过了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.
(11·珠海)如图,在Rt△ABC中,∠C=90°.(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点.(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连结CD,则DE=_ ▲ ,CD=_ ▲ .
(11·珠海)某校为了调查学生视力变化情况,从该校2008年入校的学生中抽取了部分学生进行连续三年的视力跟踪调查,将所得数据处理,制成拆线统计图和扇形统计图,如图所示:(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2010年有多少名学生视力合格.