某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在的学生人数为6.(1)估计所抽取的数学成绩的众数;(2)用分层抽样的方法在成绩为和这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在恰有1人的概率.
已知函数. (1)求的最小正周期; (2)求的的最大值和最小值; (3)若,求的值.
在等比数列中,,, 试求:(1)首项和公比;(2)前6项的和.
(本小题满分12分)如图,直三棱柱中,,分别为的中点,,二面角的大小为. (Ⅰ)证明:; (Ⅱ)求与平面所成的角的大小.
(本小题满分12分)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为. (Ⅰ)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率; (Ⅱ)若让每台机床各自加工2个零件(共计6个零件),求恰好有3个零件是一等品的概率.
(本小题满分12分)如图,在三棱锥中 ,为正方形,,,为的中点. (Ⅰ)证明:; (Ⅱ)求二面角的大小.