某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门。该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同。(1)求恰有2门选修课这3个学生都没有选择的概率;(2)设随机变量为甲、乙、丙这三个学生选修数学史这门课的人数,求的分布列及期望,方差.
(本小题满分12分)如图所示,直线平面,且四边形为矩形,四边形为直角梯形,,,,.(1)求证平面;(2)求平面与平面所成锐二面角的余弦值.
已知,.(Ⅰ)求的最大值及取得最大值时的值;(Ⅱ)在中,角,,的对边分别为若,,,求的面积.
设是给定的正整数,有序数组()中或.(1)求满足“对任意的,,都有”的有序数组()的个数;(2)若对任意的,,,都有成立,求满足“存在,使得”的有序数组()的个数.
在长方体ABCD—A1B1C1D1中,,点E是棱AB上一点.且.(1)证明:;(2)若二面角D1—EC—B的大小为,求的值.
选修4—5:不等式选讲已知,,为正实数,若,求证:.