已知5个乒乓球,其中3个新的,2个旧的,每次取1个,不放回的取两次, 求:(1)第一次取到新球的概率.(2)第二次取到新球的概率.(3)在第一次取到新球的条件下第二次取到新球的概率.
设函数.(I)求的单调区间;(II)当0<a<2时,求函数在区间上的最小值.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.表1:男生身高频数分布表
表2:女生身高频数分布表
(I)求该校男生的人数并完成下面频率分布直方图;(II)估计该校学生身高在的概率;(III)从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185190cm之间的概率。
在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.(I)判别MN与平面AEF的位置关系,并给出证明;(II)求多面体E-AFMN的体积.
已知函数(),相邻两条对称轴之间的距离等于.(Ⅰ)求的值;(Ⅱ)当时,求函数的最大值和最小值及相应的x值.
已知是公差为d的等差数列,是公比为q的等比数列(Ⅰ)若 ,是否存在,有?请说明理由;(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.