设函数f(x)=1ax,0≤x≤a11-a(1-x),a<x≤1.a为常数且a∈(0,1).
(1)当a=12时,求f(f(13)); (2)若x0满足f(f(x0))=x0,但f(x)≠0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2; (3)对于(2)中的x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[13,12]上的最大值和最小值。
已知是公差不为零的等差数列,,且成等比数列. (1)求数列的通项公式; (2)求数列的前项和.
(1)已知x<,求函数y=4x-2+的最大值; (2)已知x>0,y>0且=1,求x+y的最小值.
已知,若函数在上的最大值为,最小值为. (1)求的表达式; (2)求的表达式并说出其最值.
已知函数有如下性质:如果常数,那么该函数上是减函数,在上是增函数. (1)已知,,求函数的最大值和最小值. (2)已知,,利用上述性质,求函数的单调区间和值域.
设命题:方程无实数根;命题:函数的定义域是.如果命题为真命题,求实数的取值范围.