(本小题满分13分)如图,在直四棱柱中,底面是边长为的正方形,,点E在棱上运动.(Ⅰ)证明:;(Ⅱ)若三棱锥的体积为时,求异面直线,所成的角.
设全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}.(1)求(∁IM)∩N;(2)记集合A=(∁IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A=A,求实数a的取值范围.
已知抛物线,为抛物线的焦点, 为抛物线上的动点,过作抛物线准线的垂线,垂足为.(1)若点与点的连线恰好过点,且,求抛物线方程;(2)设点在轴上,若要使总为锐角,求的取值范围.
已知函数(∈R).(1)若函数在区间上有极小值点,求实数的取值范围;(2)若当时,,求实数的取值范围.
如图,底面为正三角形,面, 面,,设为的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.
设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设, 求数列的前项和.