如图,点D,E在△ABC的边BC上,连 接AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③:①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答) ;(2)请选择一个真命题进行证明(先写出所选命题,然后证明)
如图,在平行四边形ABCD中,为上两点,且,.(1)找出图中一对全等的三角形,并证明;(2)求证:四边形是矩形.
今年“3.15”期间某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:同一日内,顾客在本商场每消费满200元,就可以在箱子里一次摸出两个球,商场根据两小球所标金额之和返还相应数额的购物券.某顾客刚好消费200元.(1)该顾客至少可得到 ▲ 元购物券,至多可得到 ▲ 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得的购物券金额不低于30元的概率.
先化简再求值:,其中是方程的根.
(1) 计算: (2) 解不等式:
如图,抛物线与x轴交于A,B两点,点B坐标为(3,0)顶点P的坐标为(1,-4),以AB为直径作圆,圆心为D,过P向右侧作⊙D的切线,切点为C.求抛物线的解析式请通过计算判断抛物线是否经过点C;设M,N 分别为x轴,y轴上的两个动点,当四边形PNMC的周长最小时,请直接写出M,N两点的坐标.