在平面直角坐标系中,曲线C1的参数方程为 (a>b>0,为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M 对应的参数= ,与曲线C2交于点D (1)求曲线C1,C2的方程;(2)A(ρ1,θ),Β(ρ2,θ+)是曲线C1上的两点,求的值。
(本小题满分14分)已知 c>0, 设命题p:指数函数在实数集R上为增函数,命题q:不等式在R上恒成立.若命题p或q是真命题, p且q是假命题,求c的取值范围.
某种产品的广告费支出(单位:百万元)与销售额(单位:百万元)之间有如下对应数据
(1)画出散点图;(2)求线性回归方程;(公式:)(3)预测当广告费支出为7百万元时的销售额。
(本小题满分13分)某商场举行抽奖活动,从装有编号0,1,2,3四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖。(1)求中二等奖的概率; (2)求未中奖的概率。
求与椭圆有共同焦点,且过点的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.
为了了解中学生的体能情况,抽取了某校一个年级的部分学生进行一次跳绳次数测试,将所得的数据 整理后,画出频率分布直方图,如下图所示,已知图中从左到右前三个小组的频率分别为 , 第一小组的频数为5(1)求第四小组的频率;(2)参加这次测试的学生数是多少?(3)若次数在60次以上(含60次)为达标,试求该年级学生跳绳测试的达标率是多少?(4)利用直方图估计该年级学生此次跳绳次数的平均值。