1)求经过直线x-y=1与2x+y=2的交点,且平行于直线x+2y-3=0的直线方程.2)在直线x-y+4="0" 上求一点P, 使它到点 M(-2,-4)、N(4,6)的距离相等.
已知函数(1) 若函数在上单调,求的值;(2)若函数在区间上的最大值是,求的取值范围.
设是虚数,是实数,且(1) 求的实部的取值范围(2)设,那么是否是纯虚数?并说明理由。
已知数列满足(I)求数列的通项公式;(II)若数列中,前项和为,且证明:
,,为常数,离心率为的双曲线:上的动点到两焦点的距离之和的最小值为,抛物线:的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线:(为负常数)上任意一点向抛物线引两条切线,切点分别为、,坐标原点恒在以为直径的圆内,求实数的取值范围。
已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.