现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X Y|,求随机变量ξ的分布列与数学期望Eξ.
如图,某兴趣小组测得菱形养殖区的固定投食点到两条平行河岸线的距离分别为4m、8m,河岸线与该养殖区的最近点的距离为1m,与该养殖区的最近点的距离为2m. (1)如图甲,养殖区在投食点的右侧,若该小组测得,请据此算出养殖区的面积; (2)如图乙,养殖区在投食点的两侧,试在该小组未测得的大小的情况下,估算出养殖区的最小面积.
如图甲,在直角梯形中,,,,是的中点. 现沿把平面折起,使得(如图乙所示),、分别为、边的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面; (Ⅲ)在上找一点,使得平面.
平面直角坐标系中,已知向量且. (1)求与之间的关系式; (2)若,求四边形的面积.
已知函数 (1) 求曲线在点A(0,)处的切线方程; (2) 讨论函数的单调性; (3) 是否存在实数,使当时恒成立?若存在,求出实数a;若不存在,请说明理由.
已知数列的各项均为正数,表示该数列前项的和,且满足,设 (1)求数列的通项;(2)证明:数列为递增数列; (3)是否存在正整数,使得对任意正整数恒成立,若存在,求出的最小值。