已知函数.(1)对任意实数,恒有,证明;(2)若是方程的两个实根,是锐角三角形的两个内角,求证:。
定义在上的偶函数,已知当时的解析式(Ⅰ)写出在上的解析式;(Ⅱ)求在上的最大值.
函数的定义域为A,值域为B,求.
计算(Ⅰ)(Ⅱ)
设分别是椭圆的左右焦点,过左焦点作直线与椭圆交于不同的两点、.(Ⅰ)若,求的长;(Ⅱ)在轴上是否存在一点,使得为常数?若存在,求出点的坐标;若不存在,说明理由
四棱锥中,面,为菱形,且有,,∠,为中点.(Ⅰ)证明:面;(Ⅱ)求二面角的平面角的余弦值.