(本题满分12分 )2013年国庆期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段,,,,,后得到如下图的频率分布直方图.(1)此调查公司在采样中,用到的是什么抽样方法?(2)求这40辆小型车辆车速的中位数的估计值;(3)若从车速在的车辆中任抽取3辆,求抽出的3辆车中车速在的车辆数的分布列及数学期望.
已知A(1,1)是椭圆()上一点,F1,F2 是椭圆上的两焦点,且满足. (I)求椭圆方程; (Ⅱ)设C,D是椭圆上任两点,且直线AC,AD的斜率分别为 ,若存在常数使/,求直线CD的斜率.
在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分别是边A1A2,A2A3上的一点,沿线段BC,CD,DB分别将△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一点A。 (Ⅰ)求证:AB⊥CD; (Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。
已知数列、满足,,。 (Ⅰ)求数列的通项公式; (Ⅱ)若数列的前项和为,设,求证:。
在△ABC中,角A、B、C所对的边分别为a、b、c,向量,.已知. (Ⅰ)若,求角A的大小; (Ⅱ)若,求的取值范围.
在△ABC中,若sin(2π-A)=-sin(π-B),cosA=-cos(π-B), 求△ABC的三内角.